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This paper describes some of the experimental and theoretical problems 
encountered when the Taylor dispersion method is applied to the measurement 
of diffusion coefficients near gas-liquid critical points. We have used our own 
measurements of diffusion of benzene and toluene in supercritical carbon 
dioxide, along with measurements from several other sources, to illustrate some 
of the experimental challenges. Special attention is given to the peak shape. The 
intercomparisons are greatly simplified by comparing the experimental data as 
functions of density, rather than pressure. We find large and unexplained dis- 
crepancies between the various experimental sources. We discuss the theoretical 
predictions for the relationships between the diffusion coefficients and dif- 
fusivities obtained from Taylor dispersion and dynamic light scattering in fluids 
near critical points. We conclude that there is no strong reason to press for 
Taylor dispersion measurements near the gas-liquid critical point of the carrier 
gas. 
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binary diffusion coefficient. Measurements of transport coefficients near 
critical points of compressible fluids have never been a simple task. There 
are two principal reasons for this difficulty. First, until the advent of 
dynamical light scattering, these measurements have required the imposi- 
tion of a macroscopic gradient in temperature, pressure, or concentration. 
Because of the divergence of the corresponding susceptibility, such 
gradients cause increasing disturbance of the system as the critical point is 
approached and are, therefore, "self-limiting" in the sense that the size of 
the gradient employed sets a limit to the approach to the critical point. 
Second, traditionally, such experiments have been carried out as a function 
of pressure and temperature, without control or measurement of the 
experimental density. Many are the reports in the literature of anomalies in 
the transport coefficients of pure fluids that later turned out to be due to 
experimental artifacts; for a review, see Ref. 1. 

A theoretical appreciation and understanding of the nature of the 
critical anomalies of transport coefficients became possible only after 
experimental techniques were perfected to the point that reliable results 
could be obtained near critical points. Thus, the first reliable determination 
of the presence of a very weak anomaly in the viscosity of a pure fluid near 
the gas-liquid critical point [2] was possible only after Joseph Kestin and 
his collaborators perfected the oscillating-disk viscometer to a level of 
accuracy that made the instrument the world's standard for viscosity 
measurement. Likewise, the considerably stronger anomaly in the thermal 
conductivity of gases observed by Sengers and co-workers [3,4]  was 
established with certainty only after perfection of the parallel-plate thermal 
conductivity apparatus. 

A satisfactory state of knowledge and understanding has been recently 
attained in the measurement of the binary diffusion coefficient D12 by 
means of light scattering and by means of Taylor dispersion in binary 
liquids near consolute points [-5]. 

The measurement of diffusion coefficients near gas-liquid critical 
points, however, has not yet been perfected to the point reached for the 
other transport coefficients. In applications in the highly compressible 
regime near the gas-liquid critical point, it has proven hard to obtain 
reliable data, thus thwarting efforts to enhance the theoretical insight. The 
recent review of Liong et al. [-6] of the various methods used in supercriti- 
cal fluids is a good example of the state of affairs. Although all experimen- 
tal methods are described and extensive references to literature data are 
given; no data comparison or evaluation is made. The various theories that 
have been proposed for the critical behavior of the diffusion coefficient are 
summarized, but the connection with the experimental data obtained by 
tracer methods, light scattering and Taylor dispersion is not made. Only 
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very recently, in the paper by Clifford and Coleby [7], a realization of the 
special difficulties in this regime begins to emerge. 

In this paper, we discuss the experimental limitations of the Taylor 
dispersion method in supercritical compressible fluids (a) in principle, 
(b) on the basis of our own experience, and (c) by comparing the literature 
data obtained for two key systems, benzene and toluene in supercritical 
carbon dioxide. In describing our own experiments, we focus on our new 
results on peak shapes as well as on "self-limitation" effects mentioned 
above. We carry out the comparison of our own and other literature data 
by converting all measured pressures to density, thus presenting for the first 
time a comprehensive data comparison of more than half a dozen sources 
and complementing the review of Liong et al. We show that the density 
dependence is inherently simple. We corroborate this finding by a 
theoretical justification that no critical anomalies are expected in a Taylor 
dispersion measurement of the diffusion coefficient at infinite dilution near 
a gas-liquid critical point. We comment on the relation between the 
infinite-dilution diffusion coefficients obtained from Taylor dispersion and 
the diffusivities obtained from dynamic light scattering, thus making the 
qualitatively correct conclusions of Clifford and Coleby more precise. 

2. THE TAYLOR DISPERSION METHOD 

2.1. General 

There is a vast literature on the topic of the Taylor dispersion techni- 
que for the measurement of diffusion coefficients. The 1980 paper by 
Alizadeh, Nieto de Castro, and Wakeham [8] gives a thorough discussion 
of the method and its application to liquid diffusivity measurements, refers 
to many of the relevant preceding papers, and investigates the principal 
sources of error. We therefore limit ourselves to a short summary here, but 
with the perspective of application to supercritical fluids. 

In the Taylor dispersion method, a carrier fluid or fluid mixture flows 
in laminar steady-state flow through a tube of uniform diameter. A very 
small amount (a "plug") of a second fluid (a pure compound or a solution) 
is injected into the carrier fluid. If mutual diffusion were negligible, the plug 
would assume the Poiseuille profile, elements near the wall remaining stag- 
nant and elements near the center moving on streamlines with up to twice 
the average velocity. A detector further down the tube would record a 
widely dispersed peak. On the other hand, if the mutual diffusion coefficient 
were very large, each element of the injected plug would sample all different 
streamlines in a short time, and therefore all elements of the injected peak 
would move with the average speed. A detector downstream would record 
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the original sharp peak stream by, except for the broadening caused by 
diffusion in the axial direction, which, in our application, is always a small 
effect. Thus, the broadening of the injected peak is a measure of the mutual 
diffusion coefficient, a broad peak indicating a low diffusion coefficient. 

2.2. Relation of Dispersion and Diffusion Coefficient 

We follow the review of Alizadeh et al. [8], centering on issues of 
importance in our own experiments. The original calculation of the relation 
between the peak width and the diffusion coefficient was due to Taylor [9]. 
He showed that at infinite tube length, the peak becomes Gaussian. Aris 
[ 10 ] corrected some of the assumptions made by Taylor and calculated the 
moments of the axial distribution in an infinitely long tube in terms of the 
physical parameters of the tube and of the diffusion coefficient. For defini- 
tions of the moments, we refer to Aris' paper. The cross-section averaged 
normalized second spatial moment /~  was given by Aris [10] as 

/ t i 2 a 2 \  - 2 4 [  (O~2nOl2tX~l 
i t , 2 = 2 ~ D , 2 + ~ ) t _ 1 2 8 u ~ ) a 6 v  - D122/..a0n8 1 - e x p  ~oo ] J  (1) 

Here D12 is the mutual diffusion coefficient, t/o the average velocity, ao the 
radius of the tube, and t the time; the %, are known numerical coefficients. 
The second term on the right-hand side includes a transient. In our 
application, typical values of experimental parameters are as follows: flow 
speed ~o=0 .5cm.s -1 ;  capillary radius a0=0.04cm; duration of an 
experiment t=7200s;  binary diffusion coefficient D12=10-4cm2-s-1; 
capillary length L = 40 m; coil radius Rr = 10 cm; 4 injection volume, 0.5/~1; 
detector volume VD = 0.25 #1; and typical standard deviation of peak when 
detected, 60 s (30 cm). 

In our case, the product D12 t/a 2 is very large, since the time required 
to reach the detector is of the order of 2 h, and therefore the second term 
on the right-hand side is reduced to a constant. Furthermore, the entire 
second term is a very small fraction (approximately 10 -4) of the first and 
can be neglected. We therefore calculate the diffusion coefficient from the 
relation 

/ ff2a2 \ 
(2) 

4 The capillary was arranged as an oval, with half of its length being straight (2 semicircular 
sections, curvature radius Re, 30 cm apart). 
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The value for ao is the radius of the tube, not the diameter, as erroneously 
stated (but correctly used) in Ref. 11. In our application, the term inversely 
proportional to D12 dominates, but the term linear in D12 is not quite 
negligible (800 times smaller), so we include it in our evaluation of the 
diffusion coefficient from the measured second moment. 

If an infinitely narrow peak is injected, the peak will become a 
Gaussian only at infinite time. For any finite time the peak is expected to 
display a skewness S, the ratio of the square of the third moment to the 
cube of the second moment, given by [8, 10] 

S -  (#;)2 49~6a8 ( )3 (3) 
(la2) 22~ 1 + 48D~2, } t 

For the experimental parameters listed above, we calculate the skewness to 
be expected for our experiments from this effect to be of the order of 
S =  1.2 x 10 -2. We were unable to reproduce the value S ~  10 -8 quoted in 
Ref. 8. 

Alizadeh et al. calculate the error introduced by measuring the tem- 
poral distribution at a fixed point in the tube, instead of the spatial dis- 
tribution at a fixed time. They assume a normal spatial distribution (which 
is of course not quite true in our case, given the 1% skewness) and then 
show that, in lowest approximation, the first moment of the temporal dis- 
tribution (the retention time) differs from that of the spatial distribution by 
a factor of (1 + 2ff0)~7o 1, and the second moment of the temporal distribu- 
tion differs from that of the spatial distribution by a factor of (1 + 6~o)~o 2, 
with ~o defined as 

a~176 (4) 
48LD 12 

In our case, this parameter amounts to only 10 4, and therefore the tem- 
poral first and second moments can be assumed to be related to the spatial 
ones by #i=# ' i~o i. The temporal moments #i are the ones we derive from 
our experiment. 

We have calculated what the effect of replacing the spatial by the 
temporal peak would have on the third moment and, therefore, on the 
skewness. We find that this results in a positive contribution to/~3, which 
leads to a skewness of approximately 6.5 x 10 -4, somewhat smaller than, 
but not negligible to, the skewness resulting from finite tube length 
[Eq. (3)] and that experimentally observed. 

Alizadeh et al. also discuss the effect of the detector. If it is assumed 
that in the transition to the detector (an UV absorption cell), the fluid 

840/14/4-19 
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element becomes completely mixed, then a new boundary condition is 
imposed on the diffusion equation at the exit of the tube. In addition, the 
finite size of the volume induces another correction to the moments due to 
decreased spatial resolution. The correction to /t2 due to the changed 
boundary condition is again proportional to G0, which is negligible in our 
case. The correction 6/t2 for the finite size of the detector volume is given 
by 

In our case, VD is entirely negligible with respect to the volume of the tube, 
and therefore this correction is of no importance. Similarly, the effect of the 
finite injector volume on/z 3 and therefore on the peak shape was found to 
be negligible for our apparatus. 

2.3. Determination of the Moments 

The instrument at Ruhr-Universit~t Bochum uses a UV detector to 
determine the temporal shape of the dispersing UV-active injected species. 
In previous work, the peak was recorded graphically and analyzed for the 
location of the maximum and for its width by a tangent construction�9 
Recently, the instrument has been modified by interfacing the UV detector 
with a computer�9 Data are presently taken at intervals of a few seconds 
over the full length of a typical run (five or six peaks, at 13- to 15-min 
intervals) and permanently stored�9 

The simplest form of data analysis is a direct calculation of the 
moments from the following expressions: 

1 vo=Ey , UO=7oEY/=l 

1 ~y i ( t i - { )  vl i=O V l = 2 y i t i ,  ~1 VO Vo 

1 v 2 v~ v2=EYi t2, #2=~Ey i ( t i - 7 )  2-  = a  2 (6) l~ ~ ~2 

v3 = 2  t3 1 Yi i, #3=--~'~Yi(ti--?)3=V3--3V2.~.V~2 +2 V~ 
I)o ~)o 1)o 1~3 

1 v 4 

V 4 = 2 y i t 4 '  #4=-~0 ~yi(ti-?)4-=-v4-a~-+-6V2V''-'~vO VO V3 -- 3 V4 
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Here the vi are temporal moments with respect to a starting point 
preceding in time (t) the beginning of the peak, and the yi are the UV 
detector readings relative to a background term which is linearly inter- 
polated between a point just before and just after the peak. The /~i are 
temporal moments normalized with respect to the center of the peak. By 
varying the beginning and end point of the calculation within a reasonable 
range, we find that the normalized second moment/~2 is stable on the level 
of a few tenths of a percent. 

Alternative ways of analyzing the data have been explored: After sub- 
traction of the background, as explained earlier, the data have been fitted 
to a Gaussian by linear regression, which requires the taking of a logarithm 
and appropriate adjustment of the weights. Furthermore, a direct fit of the 
experimental data to a skewed Gaussian with a linear background function 
has been done by nonlinear regression, by means of the Marquardt- 
Levenberg algorithm. 

The results of the calculation of moments by these three different pro- 
cedures are summarized in Table I for six sample peaks, arbitrarily chosen 
from our collection of data for benzene and toluene in CO2, discussed 
later. In the worst case, labeled No. 15, the second moments from the three 
analyses have a spread of 7 %. In all other cases, the spread is under 6 %. 
In the diffusion coefficients we report, we select for each peak the one of the 
three different methods of calculation which gives the best deviation plot, 
then average over the number of peaks measured for the particular state 
point. 

The results of the moment summation are the most revealing, because 

Table I. Evaluation of Standard Deviations or Moments from Experimental Peak Shape a 

Nonlinear Momentum summation 
Linearization regression 

0-2 0"2 ]/2 [/3 ]/4 3,u~ 
N o )  (s 2) (s 2) (s 2) (s 3) (107 s a) (10 7 s 4) S 

4 3,461 3,531 3,450 8,260 3.457 3.571 1.66 • 10 3 
8 3,346 3,519 3,308 2,713 3.080 3.283 0.20 x 10 -3 

14 3,312 3,415 3,298 12,400 3.198 3.263 4.28 x 10 -3 
14 3,316 3,576 3,310 -9 ,201 3.272 3.287 2.33 • 10 -3 
15 3,737 4,003 3,729 21,297 4.195 4.172 8.75 x 10 3 
17 3,531 3,454 3,493 17,178 3.668 3.660 6.92 • 10 -3 

a Linearization: weighted linear regression of logarithmic plot. Nonlinear regression: fit to a 
skewed Gaussian by means of a Marquardt-Levenberg algorithm. Momentum summation: 
according to Eq. (6). 0-, s tandard deviation in seconds, (s);/~i, moments Eq. (6); S, skewness, 
Eq. (3). 

b The numbers refer to experimental conditions listed in Tables V and VI. 
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Fig. 1. Detector output of a Taylor dispersion experiment (UV 
absorbance A; left scale). ( - - - )  Experimental data; ( . . . . . .  ) pure 
Gaussian, as determined from the second moment of the 
experimental data. The upper portion of the diagrams shows an 
enlarged deviation plot [(A~x v -  A(;auss)/Amax; right scale]. (a, b) 
Benzene in CO 2 (experimental conditions; see entries 4 and 8 in 
Table V); (c) toluene in CO 2 (entry 14 in Table VI). 
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they permit a check on the Gaussian character of the peak shape. For a 
true Gaussian, the third moment P3 and the peak skewness S are zero, and 
the fourth moment equals three times the square of the second. From the 
data in Table I it is clear that the third moment is relatively small and 
almost always positive, and that the peak skewness S is between 0.1 and 
1%, as expected for our apparatus conditions. Also, we find that the 
Gaussian condition//4 - - - - -  3//2 is fulfilled on the level of a few percent. 

In Figs. la-c, we display some of the measured absorbance peaks, cur- 
ves a and b being for benzene in CO2, and curve c for toluene in CO2. The 
lower part of each diagram shows the measured peak (full curve) and the 
pure Gaussian based on the second moment derived from the data (dotted 
curve). It is seen that the departures from a pure Gaussian are no more 
than a few percent. Nevertheless, the three peaks have some systematics in 
common: The top of the measured peak is slightly low, while the wings 
"bulge." This systematic effect is seen in many of our fitted peaks and may 
be due to spurious "peak averaging" caused by fluctuations in the expan- 
sion section of the apparatus (see Section 3.5) or to other potential 
artifacts, such as nonlinearity of the detector. On the other hand, there 
seldom is any indication of "tailing" or other peak asymmetry beyond what 
is to be expected. 

2.4. Tube Coiling 

Traditionally, Taylor dispersion is measured in long tubes that need to 
be coiled in order to keep their temperature homogeneous. Alizadeh et al. 
[8] discuss the disturbance of the Poiseuille flow in a coiled tube, referring 
to earlier fundamental studies by Janssen [12] and by Nunge et al. [-13-]. 
Nunge et al. point out that tube coiling has two effects. First, the velocity 
profile is elongated, leading to greater dispersion of the peak and smaller 
apparent values of D12. Second, centrifugal effects set up secondary flow 
perpendicular to  the flow direction and, therefore, increase the mixing, thus 
augmenting the diffusional effects; this leads to narrower peaks and larger 
apparent values of D12. Janssen treats only the second effect. Alizadeh et al. 
quote the full expression from Nunge, but with the opposite sign for the 
effect on the second moment. 

The dimensionless parameter characterizing the curvature of the coil is 

Rc 
c, = - -  (7) 

ao 

which in these applications is always large, in our case about 250. In that 
case, according to Alizadeh et al., the correction to the second moment due 
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to the tube curvature depends on the dimensionless group De2Sc, where De 
is the Dean number, 

Re is the Reynolds number, 

De = Re o9 1/2 (8) 

Re 2ao~oP (9) 
t/ 

with p the mass density and t/the viscosity, and Sc is the Schmidt number, 

Se= n (10) 
pD12 

The relative sizes of the two effects are discussed in some detail in the 
paper by Nunge et al. [13], who show that the peak broadening effect, due 
to a term proportional to Re2Sco9 -2, and therefore not simply dependent 
on the dimensionless group De2Sc, dominates at small Reynolds numbers 
if o9 ~< 10, while the peak narrowing effect, proportional to Re4Sc2o9 2 = 

(De:Se) 2, dominates at larger Reynolds numbers. Janssen calculates only 
the secondary flow effect, mentions that it is proportional to (DeZSc) 2, and 
states that it decreases the axial dispersion if this parameter exceeds the 
value of 100. Alizadeh et al. [8], however, though using the full expression 
for the dispersion coefficient from the Nunge paper (be it with the opposite 
sign), show only an increase in the second moment (their Fig. 4, p. 265, for 
o9 ~> 100). The shift in the second moment increases, apparently quadrati- 
cally, with increasing De2Sc, to reach about 1% when this dimensionless 
group exceeds the value of 60. We have assumed that the sign in the 
Alizadeh paper is incorrect for our application. 

In our application, we have the following typical values for the dimen- 
sionless numbers and fluid parameters p [14 ] and t/ [15 ]: p = 0.7 g" cm-3; 
r /=57/~Pa.s;  ~7o=0.5cm's-1; o9=250; Re=50;  Sc= 10; and D e = 4 .  It 
follows that DeZSc is about 160, so that we must expect a nonnegligible 
decrease in the second moment (apparent increase in D12) due to 
centrifugal effects (approximately 2.3 % for the conditions listed above, 
according to Eq. (71) in Ref. 8, see Fig. 2). In practice, the effect should be 
smaller, because our capillary was coiled as an oval, and the o9 value given 
above applies only to half of the length of the capillary. Experimentally, 
such effects can be tested by measuring the dispersion as a function of flow 
speed. In the paper by Swaid and Schneider [16], for instance, a marked 
increase in the apparent diffusion coefficient was noted in an apparatus of 
similar dimensions at high flow speeds. Even in the speed range of 0.6 to 
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Fig. 2. Influence of flow speed ~0 on the observed 
diffusion coefficient. Benzene in CO2, density 
p--0.701-0.703g.cm -3. ( 1 )  307.9K; ( I )  309.7K; 
( ) calculated from Eq. (71) in Ref. 8 (with the 
opposite sign of the coiling correction) for experimental 
conditions and hydrodynamic parameters listed above. 

2.5 cm. s -1, the measured diffusion coefficients increase by several percent 
(Fig. 3 in Ref. 16). Because of this finding, a flow speed of 0.5 cm .s J has 
usually been adopted, as a compromise between experimental feasibility 
and absence of secondary flow effects. It is practically not feasible to 
decrease our flow speed substantially, since increasing the retention time 
much beyond the present several hours will increase the effect of uncon- 
trolled disturbances. Nevertheless, we have some indication of flow-speed 
dependence from our own measurements. In Fig. 2, we show the diffusion 
coefficient of benzene in CO2 determined for fixed state conditions of 
pressure, temperature, and density, measured at flow speeds from 0.3 to 
0.8 cm �9 s 1. A trend exceeding the experimental uncertainty is visible, and 
the sign is consistent with peak narrowing at higher flow speed. It is 
obvious that this effect could have many causes. Whatever the cause, 
however, Fig. 2 pinpoints one artifact that may cause our diffusion coef- 
ficients to be several percent high if measured at flow speeds exceeding 
0.5 cm. s -1. 
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3. HIGHLY COMPRESSIBLE STATES 

3.1. Density Variation Due to Limited Pressure and Temperature Control 

The diffusion coefficient of a fluid is a function of the fluid density. Any 
error in the observed pressure and temperature causes an error in the 
density. Diffusion coefficients are seldom measured to better than 1% 
uncertainty. If it is assumed that the diffusion coefficient varies roughly 
inversely to the density, one needs to control the fluid density to somewhat 
better than 1% for the density uncertainty not to cause appreciable error 
in the diffusion coefficient. 

In Taylor dispersion experiments, typical uncertainties of temperature 
control and measurement are about 0.1 K, and those of pressure control 
and measurement about 0.01 MPa. For applications to liquids, this is 
adequate. For supercritical states, the uncertainty of the density as a 
consequence of the pressure and temperature uncertainty becomes very 
large near the critical point of the carrier gas. In Table II, we present some 
estimates of the density uncertainties caused by the typical 0.1 K and 
0.01 MPa uncertainties at various states of supercritical carbon dioxide. 
The equation of state of Ref. 14 was used to calculate these uncertainties. 
From the data in Table II we conclude that with this quality of tem- 
perature and pressure control, if the density range from 0.3 to 0.6 g.  cm-3 

Table IL Effect of a Temperature Variation diT= 0.1 K or of a Pressure Variation 
6P = 0.01 MPa on the CO2 Density 

T P p (Op/O T)p 6 T (Op/OP) r 6P 
(K) (MPa)  (kg.  m -3) (kg.  m - 3 )  ( k g - m - 3 )  

306 9.0 703 1.7 0.5 
8.5 674 2.3 0.7 
8.0 621 4.4 1.7 
7.5 316 3.4 3.0 
7.0 234 0.8 1.0 

310 10.0 686 1.6 0.5 
9.0 6t5 3.0 1.2 
8.5 515 7.1 3.6 
8.0 327 2.5 2.2 

313 13.5 755 0.9 0.2 
12.0 719 1.1 0.3 
10.0 632 2.1 0.7 
9.5 584 3.0 1.2 
9.0 493 4.9 2.6 
8.5 358 2.7 2.1 
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is entered at temperatures below 310 K (37~ 6 K above the critical point 
of CO2), a density uncertainty is incurred exceeding 1%. This sets a 
practical limit to the applicability of the Taylor dispersion method in 
supercritical fluids. 

We have recently improved the control and measurement of the 
temperature of the dispersion tube to 0.01 K. This considerably reduces the 
uncertainty in the density due to temperature fluctuations of the tube. The 
uncertainty of the pressure, and several other factors to be discussed, still 
leaves the region specified above inaccessible to reliable experimentation. 

3.2. Disturbances of Laminar Flow Due to lnhomogeneous Density 

The analysis of the Taylor dispersion experiment is founded upon the 
assumption of Poiseuille flow. Necessary conditions are that the fluid 
properties, in particular the density and the viscosity, are independent of 
the position in the tube, irrespective of the concentration of the second 
component. None of these assumptions can be taken for granted in 
applications near the critical point of the carrier gas. Even in a pure fluid 
flowing through a tube, there are several reasons that the density is no 
longer homogeneous. In the axial direction, pressure gradients required 
to maintain the flow will lead to density gradients driven by the high 
compressibility tr As the density varies, so does the viscosity. Only very 
recently, van den Berg, ten Seldam, and van der Gulik [-17, 18] have made 
the first analysis of the disturbance of the parabolic flow profile in the case 
of a near-critical pure fluid flowing through a cylindrical tube. 

Alizadeh et al. [8] discuss some of the consequences of the fact that 
the density of the injected liquid sample is necessarily different from that of 
the carrier fluid. Axial density differences will lead to longitudinal pressure 
gradients that modify the flow. Radial gradients lead to secondary flow 
driven by buoyant forces. They mention that no satisfactory approximate 
solutions of the Taylor dispersion process exist even in the case that density 
gradients are small and linear in concentration. After the second substance 
is injected, there will be a transient period during which the sharp 
concentration and density gradients diminish sufficiently that the ordinary 
Taylor dispersion process can take over, but a mathematical analysis of the 
transient process is not available. 

Alizadeh et al. therefore advise keeping the concentration differences 
as small as possible, by adjusting the composition of the injected peak close 
to that of the carrier fluid. In the case of binary liquid mixtures near 
consolute points, this technique has proven very effective, as discussed in a 
recent publication by Matos Lopes et al. E5]. Alizadeh et al. state that 
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ultimately, however, the only means to be sure that no buoyancy effects are 
present is to show that the diffusion coefficient obtained is independent of 
flow velocities and injection concentrations. 

3.3. Solute Effects on Density Near the Solvent Critical Point 

The difficulties discussed in Section 3.2 are greatly magnified if the 
process of Taylor dispersion is applied near a gas-liquid critical point. The 
very fact of injecting a spike of different composition into a near-critical 
fluid leads to a significant change of the density, again driven by the high 
compressibility. A recent paper by Clifford and Coleby [7] draws attention 
to this problem in the application to naphthalene diffusing into supercriti- 
cal carbon dioxide as a carrier; that paper presents estimates of the density 
disturbance due to the injection, based on a van der Waals-type mixture 
equation of state. The authors find that even 9 K above the critical point 
of CO2, the density may increase by several percent when 0.04mo1% of 
naphthalene is present in CO2. 

We have found it more convenient to estimate the effect on the basis 
of dilute-mixture thermodynamics as developed by Levelt Sengers and 
co-workers [19, 20], with pure carbon dioxide as the reference system. By 
using the relation (~p/~x)p,r(~x/~P)o,r(~P/~p)x,r= --1, we find, for the 
density variation 6p due to a composition variation ~x (=x) at fixed 
pressure and temperature, 

~P=--X\oxJp, T ~-e T,x 

Here it is assumed that the distance from the critical point is large enough 
that the density shift is still linear in the mole fraction x, and the mole 
fraction is small enough that the compressibility of the pure carrier gas 
[14] can be used (for departures from these conditions, see Refs. 19 and 20). 
The derivative (aP/~x)O,T has no strong critical anomalies, and therefore 
its critical value, indicated by the superscript c, can be used as a first 
approximation in the vicinity of the solvent's critical point. This value is 
obtained from the initial slope of the critical line or from the common slope 
of dew and bubble point line at the solvent's critical point [19, 20]. 

In Table III, some typical values of the density change of carbon 
dioxide due to the presence of a mole fraction of toluene of 0.01 are given, 
based on the approximate relation (11), a value of - 2 0  MPa obtained for 
(OP/~x)p, r from the initial slope of the near-critical dew-bubble curves for 
toluene in CO2 [21] and the equation of state of CO2 [14]. Consistent 
with the findings of Clifford and Coleby (but with far less work), we find, 
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Table III. Effect of a Toluene Mole Fraction of 0.01 on the CO2 Density 

907 

T P p (Op/~P)r 6p 
(K) (MPa) (kg.m -3) (kg.rn 3.MPa 1) (kg.m-3) 

310 10.0 686 47 9 
9.0 615 115 23 
8.5 515 363 72 
8.0 327 221 44 

313 13.5 755 20 4 
12.0 719 28 6 
10.0 632 74 15 
9.5 584 123 25 
9.0 493 261 52 
8.5 358 214 42 

333 15.0 605 37 7 
12.0 436 77 15 
9.0 236 49 10 

6 K above the critical point, a maximum density increase of 15% for a 
toluene mole fraction of 0.01. 

In order to appreciate the departures from the condition of constant 
density in the vicinity of the peak, we need to know something about the 
range of concentrations sampled in our experiment. If 0.2/~1 of sample is 
injected, the spike is 0.04 cm long. At the tube exit, the peak is about 1 m 
long. If the sample injected were pure toluene, even at the tube exit the 
mean concentration would still be of the order of 4 parts in 104. From the 
(crudely) estimated density shifts in Table III, it is obvious that for den- 
sities within a factor of  two from the critical densities and for temperatures 
as far away as 333 K, 29 K above the critical point of CO2, the condition 
of constant density is substantially violated throughout the dispersion tube. 

An obvious way to make this problem less acute is to inject the solute 
already predissolved in the solvent [5, 8, 22-26]. We have recently added 
a loop before the injection valve, in which we load about 10% of the total 
volume with solute. We then pressurize the loop to a pressure somewhat 
below the lowest pressure desired in the experiment (to prevent leakage 
into the tube through the seals of the injection valve) and let the material 
homogenize overnight. We can use the material in the loop for many 
injections, but the material per injection, and therefore the peak size, will 
slowly decrease during this time. 

The density gradients induced by the solute will lead to increased 
secondary flow when the tube is curved. There will also be disturbances of 
the Poiseuille flow due to the fact that the viscosity varies along with the 
density; As a consequence, the more viscous material will tend to remain 
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closer to the axis. When a second component is present, a concentration 
gradient may be induced which counteracts the Taylor dispersion process. 
To our knowledge, no mathematical analysis exists of this effect. 

In conclusion, the density change induced by the solute in the 
near-critical carrier gas is substantial and leads to numerous problems in 
the interpretation of the Taylor dispersion experiment. 

Moreover, as long as there is no solution of the Taylor dispersion 
problem for compressible flow, the diffusion coefficient values obtained 
from measurements in supercritical fluids can be trusted only if they have 
been shown to be independent of fluid flow speed. In addition, the solute 
needs to be prediluted in the solvent, and it needs to be demonstrated that 
the diffusion coefficient is measured in a regime where the value is 
independent of the initial concentration. 

3.4. Density Gradients Due to Pressure Gradients 

The nearness to a critical point will amplify the density gradients that 
exist because of the necessary pressure gradient inducing the flow. In our 
experiment, the pressure difference across the tube for typical conditions 
(see Section 2.2) is about 600 Pa, or 6 mbar. When the fluid is not com- 
pressible, this effect, barely 1 part in 104 of the total pressure, is irrelevant. 
In fact, it is smaller than the pressure resolution of our manometer, 
approximately 0.015 MPa. In a supercritical fluid, however, it could be 
significant. In Table IV, we show the approximate difference in density at 
the beginning and the end of the tube due to this pressure difference. At a 
distance of 6 K above the critical point, the density variation is less than 
1 part in 2000 in our experiment and, therefore, not a source of significant 
error. 

3.5. Density Variations Due to Temperature Variations 

A typical Taylor dispersion apparatus contains, in addition to a tem- 
perature-controlled dispersion tube, a detector and an expansion section. 

Table IV. Density Difference Along the Tube 

7" P p (3P/3e)r 6P 
(K) (MPa) (kg .m -3) (kg .m-3.MPa-1) (kg .m 3) 

310 10.0 686 47 0.03 
310 9.0 615 115 0.07 
310 8.5 515 363 0.22 
310 8.0 327 221 0.13 
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In our case, the cell of the UV detector has a very small volume (less than 
1 pl) and is temperature-controlled by thermostated flowing water. The 
expansion section consists of a pressure regulator followed by a needle 
valve. Since there is considerable cooling associated with the expansion of 
the carrier fluid, the expansion section is located in a separate air thermo- 
stat with on-off temperature control on the level of a few tenths of a kelvin 
(a liquid thermostat is under construction). The volume of the carrier gas 
in this air thermostat, prior to expansion, is not small, and pressure varia- 
tions due to the alternating temperature can feed back to the preceding 
dispersion tube. As a consequence, a peak passing through the detector will 
move back and forth, thus affecting the shape registered by the detector. 
We believe that this may be one reason that the maxima of our peaks are 
somewhat low, or the wings slightly high, compared to a true Gaussian, 
detector nonlinearity being another possibility. At temperatures of 313 K 
and lower, in practice measurement became irreproducible for densities 
lower than 0.7 g-cm -3. 

4. DIFFUSION COEFFICIENTS FOR BENZENE AND TOLUENE 
IN CARBON DIOXIDE 

4.1. Data Obtained at Ruhr-Universit~it Bochum 

At various times, experimental data for the diffusion coefficients of 
benzene and toluene have been obtained in forerunners of the present 
apparatus. For details about the apparatus, we refer to Refs. [25-30]. 
Some of these data are tabulated or graphically presented in the archival 
literature [16, 25, 27 ], but other data are available only in Diploma theses 
[28-30]. 

We begin by summarizing the new data we have obtained with the 
apparatus in the past year, after computerizing the data recording and 
processing, installing a new UV detector and a sample dilution loop, and 
improving temperature control and measurement. 

The diffusion coefficients for benzene are summarized in Table V, and 
those for toluene in Table VI. In most cases, five samples were injected 
at 13-minute intervals. For each peak, a second moment is calculated in 
several ways, as explained before, and a diffusion coefficient calculated from 
the average second moment by means of Eq. (2). The uncertainty of the 
diffusion coefficients quoted in Tables V and VI is one standard deviation 
based on the distribution of values for the five peaks. 

The temperature is recorded on five sensors distributed along the 
coiled tube, and the uncertainty quoted is one standard deviation based on 
these five readings, time-averaged over the duration of the experiment. The 
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Table V. Diffusion Coefficient of Benzene in Carbon Dioxide 

T P 104D12 Uo P 
No. (K) ( g . c m  3) (cmZ.s -1)  ( cm-s  1) (MPa)a 

1 314.]4 + 0.07 0.6068 _ 0.0030 1.98 4- 0.06 0.6418,4- 0.001 10.00 
2 314.14+0.07 0.7451 _+0.0009 1.51 ___0.03 0.79074-0.004 13.53 
3 307.94 4- 0.02 0.7030 _+ 0.0009 1.49 2 0.05 0.5228 4- 0.001 9.68 
4 307.93 + 0.01 0.7779 _ 0.0004 1.37 4- 0.02 0.6466 • 0.001 12.46 
5 307.93 -I- 0.02 0.7031 4- 0.0009 1.59 __+ 0.04 0.7044 + 0.001 9.68 
6 307.92 4- 0.02 0.7032 4- 0.0010 1.74 + 0.09 0.7632 + 0.001 9.68 
7 309.67 ,'-- 0.03 0.7010 4- 0.0010 1.62 + 0.04 0.8065 __+ 0.001 10.24 
8 309.68 + 0.03 0.7009 _% 0.0010 1.53 4- 0.02 0.5712 + 0.001 10.24 
9 309.66 + 0.02 "0.7015 + 0.0008 1.49 + 0.03 0.3204 _ 0.001 10.25 

Pressure uncertainty, +0.015 MPa.  

density is calculated from the pressure, read on a high-quality Heise gauge, 
and the temperature, by means of an equation of state of Span and Wagner 
[14]. The uncertainty in the density is based on a propagation-of-error 
calculation in which it is assumed that the pressure uncertainty is 
0.015 MPa, and the temperature uncertainty is the one listed. For each 
peak, a value of the flow speed is calculated from the residence time and 
the known length of the tubei The uncertainty listed for the flow speed is 
one standard deviation, based on the distribution of speeds obtained for 
the five peaks of each run. 

For any individual run of five peaks, the standard deviation is a few 
percent or less. There is, however, considerably more spread between data 
obtained in different runs, even at almost-identical pressures and tem- 
peratures. At the higher densities, such as the three toluene runs near 
0.8 g .cm -3 and 307 K (Nos. 11, 16, and 17), the total spread is still within 

Table VI. Diffusion Coefficient of Toluene in Carbon Dioxide 

T P 104Da2 rio P 
No. (K) ( g . c m  -3 ) (cm2 �9 s -1 ) ( c m . s  -1 ) (MPa)  a 

10 313.73+0.07 0.7491 +_0.0009 1.42+0.01 0.7432+0.002 13.52 
11 306.76 • 0.02 0.8028 _ 0.0004 1.23 _ 0.02 0.5103 ___ 0.002 13.40 
12 306.78 _ 0.02 0.7489 _ 0.0006 1.41 ___ 0.06 0.5554 4-_ 0.004 10.63 
13 306.12+0.02 0.7492+_0.0006 1.44+0.03 0 .5592+0 .002  10.37 
14 308.36 + 0.27 0.7230 + 0.0039 1.45 __+ 0.02 0.6298 +__ 0.003 10.37 
15 307.93 + 0.05 0.7031 + 0.0016 1.51 -t- 0.03 0.5572 _ 0.001 9.68 
16 307.90 + 0.01 0.7946 4- 0.0003 1.29 + 0.02 0.5044 + 0.001 13.43 
17 307.91 +_ 0.01 0.7946 • 0.0003 1.30 4- 0.02 0.6819 ___ 0.001 13.43 

,z Pressure uncertainty, _0.015 MPa,  
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5%, but the problem becomes more serious at the lower densities. For 
instance, for the benzene runs near 0.7 g. cm -3 (Nos. 3, 5 9), the spread of 
the diffusion coefficients exceeds 10%, and it is unlikely that the 2 K 
spread in temperature is the cause (see Section 4.3). As discussed before, we 
believe that part of the spread is due to differences in flow speed. As is clear 
from Fig. 2, however, there is considerable scatter even at constant flow 
speed. We conclude that there are still artifacts affecting the measurements, 
and the more seriously as the compressibility of the carrier fluid increases. 
In our apparatus, the limited stability of the expansion process is the most 
likely cause. 

4.2. Other Taylor-Dispersion Data Sources for Benzene and Toluene 
in Carbon Dioxide 

The review by Liong et al. [6] is a good source of information on data 
sources for benzene up to 1990. In addition to the data from Schneider and 
co-workers, they list the data of Sassiat et al. [31 ]. For toluene, Liong 
et al. show no data in our range. Since the appearance of that review, 
however, a number of new data sets have appeared. These include those of 
Umezawa and Nagashima [-32] and of Erkey et at. [23] for benzene, those 
of Sufirez and co-workers [33, 34] for benzene and toluene, and those of 
Bruno for toluene in carbon dioxide [22]. We give a few details on each 
of these experiments and then proceed to compare the data. 

The Sassiat experiment shows the remarkable feature of a 10 m long 
dispersion tube that is straight. Although the absence of coiling is a highly 
desirable feature, it will be difficult to keep the temperature uniform over 
such a long length. The temperature constancy is reported to be _+0.2~ 
Sassiat et al. [31 ] work at the relatively high maximum pressure drop of 
0.1 MPa and at a flow speed of 12 ram. s -1, according to Ref. 32. Sassiat 
et al. have spanned a very large range of densities, reaching all the way 
from liquid-like to gas-like densities. They have avoided the most serious 
effects of the high compressibility by measuring in the low-density range 
only at temperatures far from critical. At the 95 % confidence level, their 
reported diffusion coefficients for benzene have uncertainties of the order of 
2-4%. These authors have also examined the data with density as an 
independent variable and report the significant finding that at a density of 
0.8 g. cm -3 the diffusion coefficient of benzene in carbon dioxide increases 
by only 7% over a temperature range of 30~ At the density of 
0.68 g- cm-3, there is no significant change of D12 over a range of 20~ 

Erkey et al. [23, 24] use a 9-m-long straight dispersion tube of 1-mm 
internal diameter, temperature-controlled to + 0.2~ A syringe pump and 
the use of two consecutive back pressure regulators assure flow constancy 
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to better than 0.2 %. These authors have exerted much care in proving that 
the detector response is linear in concentration and have found it necessary 
to dilute their samples before injection, to at most 15% mole fraction of 
solute. They report some diffusion coefficients for benzene in carbon 
dioxide, but only in graphical form and as function of pressure. They claim 
an uncertainty of + 5 %. 

In the experiment by Umezawa and Nagashima [32], the tube is also 
straight, but it is only 1 m long, with the temperature controlled to 0.1 K. 
The inner diameters in the cases of Sassiat et al., of Umezawa and 
Nagashima, and of our own experiment are all about 1 mm. The pressure 
drop, 0.6 Pa, and flow speed, 1 mm-s  1, in the experiment of Umezawa 
and Nagashima are much lower than in our case and in that of Sassiat et 
al., but because of the short tube, the Japanese experimenters can still carry 
out an entire experiment in a short time. Umezawa and Nagashima do not 
use an absorption detector. Instead, these authors observe the gradient of 
the refractive index at two positions along the tube and use this gradient 
as a measure of the concentration gradient. We have already estimated 
(Section 3.3) that in highly compressible states, there will be density 
gradients accompanying the concentration gradients. The relation between 
the refractive index and the solute concentration is nontrivial under such 
conditions and should, strictly speaking, be calibrated. Umezawa and 
Nagashima, however, have generally limited themselves to liquid-like 
densities where they find their data to agree with those of Sassiat et al. 
They claim an uncertainty of _+ 3 % for the measured diffusion coefficients. 

Sufirez and co-workers, in a recent publication [33] and preprint 
[34], present a very useful and detailed overview of diffusion coefficients of 
many solutes in a variety of supercritical fluids. These articles also contain 
new data for several solutes in CO2, including benzene and toluene. These 
authors use a commercial Hewlett-Packard chromatograph. The disper- 
sion tube is 30 m long, has an inner radius of 0.38 mm, and is coiled with 
a diameter of 26 cm. The flow speed is 0.8 cm- s-1 or less. 

Bruno [22] measured some diffusion coefficients of toluene in CO2 at 
313 K and various pressures as part of a wider study of applications 
of chromatography. He reports densities only, calculated from the 
pressure-temperature pairs by means of a BWR equation of state for 
carbon dioxide. Bruno predissolved the solute in the carrier gas at column 
conditions. The dispersion tube is a 30-m-long capillary coiled with a 
diameter of 30 cm, in order to fit in a commercial oven. The tube has a 
0.25-mm inner diameter, only one-quarter of the size of those in the 
experiments discussed earlier. The flow speed is 2-6 cm-s -~ or below. 
Bruno achieves a temperature uniformity of +_0.015 K, which is very good. 
He uses a flame ionization detector housed in a 300~ oven. This 
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instrument is linear over 8 decades of concentration and has an exceptional 
sensitivity. A quartz restrictor feeds the flowing gas directly into the flame. 
This eliminates some of the difficulties that come with a separate expansion 
section. 

A difficult problem is that of detector linearity. For the data evalua- 
tion that follows, it is assumed that the detector signal is proportional to 
the solute concentration and that, consequently, the signal vs time data 
correspond to the concentration vs time history to a sufficient degree of 
approximation. Deviations from linearity, however, might exist even at 
very low concentrations for most of the detector types mentioned above. 
A careful calibration for detector linearity seems to be indispensable; up to 
now, such a calibration has been made only exceptionally. 

4.3. Comparison of Diffusion Data for Benzene and Toluene 
in Carbon Dioxide 

In the Taylor dispersion experiment, the diffusion coefficient is usually 
measured as a function of temperature and pressure. The steep dependence 
of fluid properties on pressure in the supercritical regime makes com- 
parison of data awkward if not impossible. Matters simplify considerably 
when the comparison is made as a function of density. The paper by Sassiat 
et al. [31] gives some good guidance. As mentioned earlier, these authors 
find that the diffusion coefficient of benzene at a CO2 density of 
0.8 g.cm -3 increases no more than 10% over the temperature range of 
303-333 K. These authors also show that at constant temperature the 
diffusion coefficient varies inversely with viscosity. This is consistent with 
the Stokes-Einstein concept that, at constant density, the mobility of a 
Brownian particle should vary linearly with temperature and be inversely 
proportional to the viscosity. At constant density, however, the viscosity of 
carbon dioxide is virtually independent of temperature in our range of 
interest [15, 31-1, so that over a range of 30K, the diffusion coefficient 
should increase by approximately 10 % at fixed density. The validity of the 
Stokes-Einstein relation has been discussed by many authors. We refer to 
the review by Liong et al. [-6] for a thorough discussion. Variations on the 
Enskog theory for dense gases, such as the rough hard sphere theory, 
tested by Erkey et al. [23, 24], predict an even slower dependence of the 
diffusion coefficient on temperature, as T 1/2. 

Different authors use different equations of state for CO2 to convert 
pressure to density. Most equations of state are at their worst in the critical 
region. We have used the equation of Span and Wagner [14 ] that has been 
recently developed on the basis of highly accurate, as yet unpublished 
data. The differences with commonly used equations, such as the IUPAC 

840!14/4-20 
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equation, may exceed 1% in density in some parts of the critical region. 
We will find that the uncertainties in the diffusion coefficient are so large 
that a 1% uncertainty in density is a minor source of error. 

All the data for the diffusion coefficient of benzene in COz are assem- 
bled as a function of density in one plot, Fig. 3. Because of insufficient 
resolution, it was not possible to convert and include the graphical O12 VS 
P data of Erkey et al. [23]. The following features are worth noting: The 
data from the Schneider group span a broad band of values; the Ellert and 
the Swidersky data are at the low end; and the Feist, some of the Swaid, 
and our own data are at the higher end. The spread is of the order of 15 % 
in D12. With the exception of the Swidersky and the Ellert data, all data 
sources agree within 10% for densities higher than 0.7 g-cm -3. Our new 
data reported here agree with those of Sufirez et al. quite well. The data 
obtained with straight dispersion tubes, those of Sassiat et al. [31] and 
those of Umezawa and Nagashima [32],  are consistently high, and the 
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Fig. 3. Experimental diffusion coefficients of benzene 
in CO2, grouped by authors. (11) Schneider and Swaid, 
318.15-328.15K, l l M P a  [16]; ([])Schneider and 
Swaid, 318.15-328.15 K, 13 MPa [16]; (O) Schneider 
and Swaid, 314.14K, 8-16MPa 1-16]; (O) Feist, 
314.14K, 8-16MPa [28]; (,) Ellert, 312.99K, 
8-16 MPa [29]; ( x ) Swidersky, 314.14 K, 10-16 MPa 
[30]; (A, A ) this work, 307.92-314.14 K; (V) Suhrez, 
313.15-333.15K [34]; ( , )  Sassiat et al., 303.15- 
333.15K, ll-26.5MPa 1-31]; (�9 Umezawa and 
Nagashima, 285.15-308.15 K, 10.5 MPa 1,32]. 
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more so the lower the density. This is contrary to the expectation that tube 
coiling decreases the peak dispersion, thus apparently increasing the 
diffusion coefficient (Fig. 2). For densities below 0.7 g. cm -3, the disagree- 
ment between the various data sources quickly reaches 25 %. 

In order to explore temperature as a contributor to the variance, we 
show, in Fig. 4, the same data set coded by temperature range. There is 
little, if any, indication of systematics due to temperature differences. 
Bringing the 60~ data of Sassiat et al. [31] (filled squares in Fig. 4)down 
by 10% will certainly reduce the spread in Figs. 3 and 4, but it will do 
nothing to reduce the large spread in the 40~ data (crosses, Fig. 4), which 
also include data by Sassiat et al. 

In Fig. 5, we collect all data for the diffusion coefficient of toluene in 
carbon dioxide. Again, our own data agree well with those of Su~rez et al. 
[-33, 34]. The data of Bruno have a much weaker density dependence than 
the other datE. It is unlikely that this is due to the different equation of 
state used by Bruno, since his data are not in the highly compressible 
regime. In the case of benzene, the diffusion coefficient increases by roughly 
50% between densities of 0.9 and 0.7 g .cm -3. In toluene, this increase is 
roughly of the same order for the same interval, according to our data. It 
is unlikely that the increase of barely l0 % displayed by the Bruno data is 
correct. 
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Fig. 4. Experimental diffusion coefficients of 
benzene in CO2, grouped by temperatures. (*) 
283-285K; ( �9 303K; (Q)  307-309K; ( + )  
313-314 K; (A)  318 K; (A)  323 K; (E]) 328 K; ( I )  
333 K. For sources of data: see the legend to Fig. 3. 
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F i g .  5. Dependence of the diffusion coefficients of 
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313.82 K [22]; (11) this work, 313.74 K; ( [ ] )  this work 
(modified apparatus), 306.12-308.36 K; (A, A ) Suhrez, 
313.15-333.15 K, 15-35 MPa [34]. 

There are several conclusions to be drawn from these inter- 
comparisons. For densities exceeding 0.8 g .cm -3, the diffusion data for 
benzene in CO2 generally agree to within 10%. The data at lower densities 
are beset with variations exceeding 25 %. The data obtained with straight 
tubes are in mutual agreement with a maximum scatter of a few percent, 
but they are 10-30% higher than the data obtained in coiled tubes. The 
discrepancy between the coiled-tube and straight-tube results is of the 
opposite sign expected, since coiling leads to peak-sharpening (increased 
apparent D12 ) under the present conditions (Fig. 2). The data for toluene 
in CO2 show a basic disagreement in their density dependence. For 
applications in supercritical carbon dioxide around 40~ and below a 
density of 0.8 g" cm -3, the Taylor dispersion method, therefore, has not yet 
given results of proven reliability. 

5. CRITICAL BEHAVIOR OF D I F F U S I O N  C O E F F I C I E N T S  

5.1. Asymptotic Behavior 

We first concern ourselves with the asymptotic critical behavior, that 
is, the behavior in a range so close to the critical point that the anomalous  
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critical behavior dominates to the extent that the normal background can 
be neglected. The characteristics of critical behavior are the strong 
divergence of the susceptibility (compressibility in pure fluids) and the 
related growth of the correlation length, a measure of the extent of a criti- 
cal fluctuation. These divergences are described by means of power laws 
that indicate their strength along a specified path to the critical point. In 
pure fluids, this path is the critical isochore, p = Pc, in binary liquids the 
critical isopleth, x = xc, and in gas-liquid systems near plait points it is a 
path with one density-like variable such as x or p held constant. 

We then have the following power laws on this special path: 

susceptibility ) s  ~ (12) 

correlation length ~ -- 4o tAT*I-v (13) 

with 

IT-Tel 
I A T * I  - - -  ( 14 )  

L 

The exponent 7 assumes the universal value of 1.24 and the exponent 
v the value of 0.63 [35]. F and 40 are critical amplitudes that vary from 
substance to substance. The mobility of a critical fluctuation asymptotically 
near a critical point is given by the Stokes-Einstein relation [36] 

k T  
D = - -  (15) 

6~1~ 

The viscosity of fluids and fluid mixtures has a very weak anomaly 
described by an exponent y which recently was definitively determined by 
Berg and Moldover [37] to have the value of 0.042. Thus 

q=~/o [AT*] -y  (16) 

and th~ critical behavior of the mobility D, Eq. (15), is given by 

D , . ~ i A T * I  v§ (17) 

which implies that D goes to zero with an exponent of (v + y)=0 .67  
("critical slowing down"). In a binary liquid mixture, D is identified wi th  
the diffusion coefficient O12. 

The mobility D goes to zero irrespective of whether the system is 
approaching a pure-fluid critical point, a plait point, or a consolute point. 
It is measured by correlation spectroscopy in dynamic light-scattering 
experiments [38-41]. The experiment of Chang et al. near the critical line 
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of CO2-C2H6, for instance, vividly illustrates how the decay of the correla- 
tions in the mixtures smoothly interpolates between that of the pure 
components, without the possibility of distinguishing between composition 
and density fluctuations [41]. 

In a pure fluid, D is to be identified with the thermal diffusivity 

2 
D r - p C  e (18) 

with Ce the isobaric heat capacity (with a strong, y-like divergence), and 
2 the thermal conductivity. Eqs. (12) and (17) imply that the thermal 
conductivity diverges according to 

2~IAT*I - (7 -~  y) (19) 

The exponent has the value of 0.57, a little less than half the strength of the 
strong divergence of the susceptibility. 

The thermal conductivity in a pure fluid is the heat flow resulting from 
a gradient in temperature, temperature being a "field" variable [42 ] equal 
in coexisting phases. In a fluid mixture, the so-called Onsager kinetic 
coefficient ~ is the flow of matter resulting from a spatial gradient in the 
chemical potential # = ~2 - P ~, again a field variable. These two coefficients 
2 and ~ have the same structure and the same critical behavior. Since the 
diffusion coefficient D~2 is a flow of matter resulting from a spatial 
composition gradient, the relation between ~ and D12 is ['43 ] 

~/P (20) 
D12 - (Ox/8#)p, 7" 

so that the kinetic coefficient ~ behaves as 

k Tp Ox 

and diverges with an exponent - (y - v - y), as the thermat conductivity in 
a pure fluid. The thermodynamic derivative (Sx/dp)e, r is called the osmotic 
susceptibility. It is a strongly diverging quantity, just like the com- 
pressibility in a pure fluid. 

5.2. Nonasymptotic Behavior 

The relations of Section 5.1 are valid very near a critical point, when 
the critical divergences are dominating the scene. In reality, the asymptotic 
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equations are valid only for the critical part of the properties in question. 
Anisimov and Kiselev [43] as well as Mostert and Sengers [44] have 
worked out the nonasymptotic behavior of transport coefficients near plait 
points in binary mixtures. They stress that Eqs. (19) and (21) describe only 
the increase in the thermal conductivity or the Onsager kinetic coefficient 
over their respective background values. Taking the background part (with 
subscript b) explicitly into account in Eq. (21), we have 

-{- 0~ b (22) 
0 ~ ' 6 - ~  P,T 

k T  ~b I/OX'~--1 

D '2 - 6-~-~q ~ + p t-~p ) e, r 

so that, with Eq. (20), 

(23) 

Strictly speaking, the Stokes-Einstein term in Eq. (23) must be multiplied 
by a crossover function equal to 1 near a critical point and approaching 
the value 0 far away. 

Anisimov and Kiselev now argue that, far from criticality, the second 
term has to provide the normal value of a diffusion coefficient. For a dilute 
mixture, (3x/Olt)~ 1 is dominated by the large ideal-mixing contribution 
RT/x, since x, the mole fraction of solute, is near 0. Therefore 0t b has to be 
proportional to x for D12 to remain finite. A rough estimate of this 
far-away contribution may be obtained from the Stokes-Einstein relation 

O~ b (OX~ -1 __ kT 
p \Olt/e,r 6~bl  (24) 

with l indicating the size of the solute molecule and qb the background 
viscosity. 

When the mixture critical line is approached, the derivative 
(0x/O/~)~, 1, the inverse susceptibility, has to change its character 
profoundly, especially in dilute mixtures. From the value of RT/x, which is 
large for dilute mixtures, it has to go to the critical value of 0. As long as 
this derivative is not decreasing, the "critical slowing down" of the first 
term in Eq. (23) cannot be noticed, and the diffusion coefficient remains 
near its background value. The precise way in which the osmotic 
susceptibility changes from its dilute-mixture value to its critical value is a 
highly technical matter, worked out for dilute mixtures by Anisimov and 
co-workers [43] and by Chang and Levelt Sengers [45]. The essential 
point is that the" osmotic susceptibility behaves as 

=x(1-x)EC, (25) 
P,  T \ / 
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on the special path, and therefore, for small x, can become large only if 

A T* ~ C 11/~xl/~ (26) 

where the asymptotic constant C1 depends on the initial slope of the criti- 
cal line and other characteristics of the particular mixture under considera- 
tion. In a Taylor experiment carried out near infinite dilution, with x 
typically of the order of 10 -4 , and with severe experimental restriction on 
closeness of approach, such as IAT*] > 0.01, this region can obviously not 
be entered, and only the nondiverging background value of the diffusion 
coefficient will be measured. 

The only way the critical slowing down could be measured by Taylor 
dispersion is by carrying out the experiment with a binary mixture instead 
of a pure fluid as the carrier gas, similar to the experiment of Matos Lopes 
et al. [-5] in a binary liquid mixture near a consolute point. This conclusion 
pertains as well to diffusion coefficients measured near infinite dilution by 
other techniques, such as tracer diffusion and NMR. In photon correlation 
spectroscopy, however, it is the mobility of the critical fluctuation, and its 
critical slowing down, that is measured [3841] .  Near infinite dilution, this 
property approaches the thermal diffusivity of the carrier gas and is, 
therefore, not a measure of the diffusion coefficient of the solute. 

Since the Taylor dispersion experiment in the one-component carrier 
gas measures the nondiverging background of the diffusion coefficient, it 
may better be carried out in regions further from the critical point, where 
the experimental complications due to the high compressibility can be 
avoided. 

6. SUMMARY 

The challenges and difficulties of the application of the Taylor disper- 
sion method for the measurement of diffusion coefficients in supercritical 
fluids have been exposed by concentrating on two systems, benzene and 
toluene in CO2, for which we report new data and compare with all 
literature data available. The discrepancies between the different data sets 
are large (15-20% from the mean), in part unexplained. Contrary to 
theoretical expectation [-13 ], straight tubes tend to yield higher diffusion 
coefficients than coiled tubes. 

Although even D12 data of limited accuracy might already be useful for 
practical applications [e.g., in supercritical fluid technology for evaluating 
mass transfer in supercritical fluid extraction (SFE) or in supercritical fluid 
chromatography (SFC)], much smaller limits of error should be attainable 
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in high-precision experiments by careful consideration of all sources of 
error such as studied in this paper. This, however, would be a difficult task. 

The large compressibility of the carrier fluid in the vicinity of its 
critical point amplifies the effects of variations of experimental variables 
such as pressure, temperature, and, especially, fluid composition; and it 
invalidates several of the assumptions made in the traditional analysis of 
the experiment, such as constancy of density. This excludes the 
applicability Of the method in a region of at least 5 K from the critical 
point for densities within + 50 % from the critical density. The theoretical 
understanding of the critical behavior of the diffusion coefficient near 
infinite dilution is that critical slowing down cannot be observed anyway in 
this density and temperature regime. 

If diffusion coefficient information near infinite dilution is desired at 
densities in the general vicinity of the critical density, it is advisable to 
carry out Taylor dispersion measurements 20 K or more above the 
solvent's critical point. 
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